Custom Content in Impression

Logicdriven, LLC

Contents

CONTENTS c.uuiiiiiiiiiiiiiitiiiicrteecr et ee et sesteae et st eaeeeetaassesttssssestesssssstessssssesssssstesnsssstenssssseensssssenns
OVEIVIBW .cueeennennnennnnnnnnennennseeaisesissssssssssmssnns
4T 1F Tt o o O
Custom Fields and Field Collections...........cccceeeiiiiiiiiineieiiiiiiiineiecni e
Using Custom Fields in the CCTcciiiiiiiiiiiiiiiiieieiiiieenieiieensienienssiestenssssssensssssssnsssssssnsssssssnssssssnssses
The CommMaNd StOrYDOArd TYPEuuiiieeieiccciiieeee e re e e e e e et re e e e e e s e ettbreeeeaesesenstsaeeseeseaenssrasnsresaeaanean
The SeqUENCEr StOrYDOArd TYPES .uueiiiii ittt e e e e e e st re e e e e e seestbbreeeeeesesenbtsaeeaeeesaanssrennsraaaeaanean
] o] oY o Yo X1 e I €] 5 Y2'0 = oo L3 PRSPPI
Runtime FrameWOrK SUPPOIt i ciiiiiieeiececiiiirreeneeeeesseereeennessssssssenseennnsssssssssseeennnsssssssssssennnnnssnnns
CUSEOM Field EXAMPIEScceeeeeeeeiiiiiieeieeieceieeternnnnsssseesseeeesnnssssssssseesesnnnsssssssseseesnnnsssssssssseennnnnssnsssnnnes
MUHRIPIE-SEIECE EXAMPIE o.eeeeeeiiietieee et e e e e e e e e e e e s et b e e e e e e seernabeaeaeaaeeeeeseannsrennaeaseans

000 Y o ol 1113 o o TR

Overview

This document describes the custom data capabilities in the Impression Learning Content Framework.

Introduction

The Impression product has always had a uniquely adaptable design, combining the flexibility of a
custom solution with the efficiencies of an off-the-shelf product. The Runtime Engine Developer’s Kits
allow you to take the courseware data developed in the Content Creation Tool and present it in any
fashion desired. Because each runtime is built from source code, the only limitations on capabilities are
those imposed by the development toolset and deployment environment; whether you use Adobe
Flash, HTML/JavaScript, Unity3D, or something else.

But a custom runtime is only part of the solution. A runtime can only work with the data it is provided
with, and (assuming that no other tools are used to create content fed to a runtime) that means that the
CCT needs to be flexible, too.

With the configuration capabilities of the CCT, there are a number of basic options you can set for each
storyboard type—for example, you can choose whether to support four or five question/answer pairs
for matching questions. You can also specify options common to all storyboards, like a narration audio
file, student directions, or remediation types for questions.

Some storyboards types support “open-ended” data fields. For example, the Canvas storyboard
supports an action type of “Command”. When this action type is selected for an element, the content
creator specifies the exact command for the element by entering a text value in the Command Text
field. The runtime framework has no intrinsic support for any specific Command action types; the
runtime engine developer must add support for the command to the player. Other examples of open-
ended fields include the Placeholder Data field on the Placeholder storyboard type, and the common
Configuration and User Defined fields. In fact, most of the fields on the General Tab are open-ended—
it’s the responsibility of the runtime to determine what to do with the (as one example) Student
Directions and Alternate Directions fields.

Looked at from a certain point of view, almost every field can be considered as an open-ended field. If
you want to use the Distractor 3 field on a multiple-choice question to store the screen style, a list of
related objectives, and the initials of the reviewer who approved the question; well, you can do it,
although your content creators may have a hard time keeping things straight.

Fortunately, there’s no need to take things to a ridiculous extreme. The CCT allows you to define
additional fields and customized storyboard types so that data needed by your runtime can be entered
with a minimum of hassle.

Custom Fields and Field Collections

Every field in a storyboard has some defined mechanism for editing the field. A Multiple-Choice Text
guestion provides multiline text boxes to allow the developer to edit the answer and distractor values; a
Multiple-Choice Graphics question uses asset selectors to let the developer pick the graphic from the
media folder. Custom fields also need a mechanism for editing—the table below lists the possible
options:

Editor Type Name Value Type Editor Description

Single line text (spellcheck) Text A single line textbox with spellcheck enabled.

Single line text (no spellcheck) Text A single line textbox without spellcheck.

Multiline Text (spellcheck) Text A multiline textbox with spellcheck enabled.

Multiline Text (no spellcheck) Text A multiline textbox without spellcheck.

List items (single-select) Text A drop-down combobox. Users may select
any one value. Values are specified along with
the field definition.

List items (multiselect) Text A list of values. Users place a checkmark next
to the values they want to select. Possible
values are specified along with the field
definition.

Graphic AssetData An asset selection widget. Clicking on the
ellipsis button to the right of the filename
brings up the media selector window with
filters for still graphics.

Video AssetData An asset selection widget. The media selector
window uses filters for videos.

Sound AssetData An asset selection widget. The media selector
window uses filters for sounds.

Flash File AssetData An asset selection widget. The media selector
window uses filters for Flash files.

Asset (generic) AssetData An asset selection widget. The media selector
window uses filters for general assets.

Boolean (yes/no) Boolean A checkbox. If checked, the value is true, if
unchecked, the value is false.

Number Number A small, single-line textbox limited to numeric
input.

Offset (x/y) Rectangle A pair of numeric input textboxes labelled “x:”
and “y:”.

Position (left/top) Rectangle A pair of numeric input textboxes labelled
“left:” and “top:”.

Size (width/height) Rectangle A pair of numeric input textboxes labelled
“width:” and “height:”.

Dimensions (left/top/width/height) | Rectangle Four numeric input textboxes labelled
appropriately.

Coordinate Pair (x1/y1/x2/y2) Rectangle As with Dimensions, but with different labels.

Color ColorData A box showing the selected color and its RGB
value. An ellipsis button on the right edge
displays a standard Windows color picker
when clicked.

Font FontData A box showing the selected font name and

size. An ellipsis button on the right edge
displays a standard Windows font picker when
clicked.

Storyboard Location

LocationData

A single box showing the title of the selected
storyboard. An ellipsis button on the right

Editor Type Name Value Type Editor Description

edge displays a dialog allowing users to select
a storyboard.

Storyboard Range LocationData | A pair of boxes showing the titles of the
beginning and end of a range of storyboards.
The ellipsis button on the right edge of each
box shows a dialog allowing users to select a
storyboard.

The CCT does not support adding custom fields directly to a storyboard; instead, an ordered collection of
fields is defined and the entire collection is presented for editing.

In addition to the editing widgets listed above, a number of additional non-field options can be added to
a collection to enhance the content development experience. These are listed in the following table:

Option Name Description

(space) Adds several pixels of spacing between elements. Often
used between groups of fields.

(section break) A horizontal line. Used to separate sections.

(element instructions — below element) A text description shown directly under the preceding
element.

(instructions) A text description with some spacing shown left justified.

(section title) A text description shown in a larger font than the
instructions or element instructions options.

Using Custom Fields in the CCT

Custom field collections are supported with the following items.

The Command Storyboard Type

The Command storyboard type allows the content developer to choose one of any number of defined
collections (called commands). The available commands are defined in the type-specific properties for
the Command storyboard.

Each command can also specify whether or not it should be treated as a question type. If the properties
specify that it should be a question, the question-related properties on the General tab will be visible
and editable. You can also specify that the storyboard may or may not be a question; if this is specified,
the CCT will look to see if a Boolean property named “IsQuestion” is present and has a value of true.

The Command Sequencer storyboard type includes both a single set of common fields (defined per
project) as well as an ordered list of commands. Any number of commands can be defined; the
sequencer allows the content developer to create and order as many commands as needed.

Both the common fields and the Command Sequencer commands are defined in the type-specific
properties for the Command Sequencer storyboard. Like the Command storyboard, the Command
Sequencer storyboard type can be defined as being a question.

Two variations of the Command Sequencer are available; the Audio Sequencer and the Time Sequencer.
Both of these storyboard types support a common field collection and any number of commands. The
Audio Sequencer also supports a single common audio file, and each command includes a time offset
indicating (typically) the point in the audio file at which the command should be processed. The Time
Sequencer also includes a time offset in each command, but does not have an associated asset.

In addition to the storyboard types listed above, a collection of fields can be added to any existing
storyboard (including the Command and sequencer storyboards). These collections are called
Storyboard Commands, and are defined from the main tab of the Project Properties dialog.

Any number of storyboard commands can be defined and created.

Runtime Framework Support

For the most part, there is no support within the Base Class Framework for custom fields. Although the
BCF includes players for the Command/Audio (AS3 BCF only)/Time Sequencer storyboard types, support
is limited to collating the data and playback-related methods and events for the Audio and Time
sequencers. There is no explicit support for the Command storyboard or for Storyboard Commands.

Custom Field Examples

The AS3 and HTML/JavaScript MyShell sample runtimes include examples of custom fields and
storyboard types:

e The Storyboard Command feature is used to add Warnings, Cautions, and Notes to any
storyboard.

e The Command Sequencer storyboard type is used to present a list of items. When each item is
clicked, additional text and a supporting graphic is revealed.

e The AS3 MyShell uses the Audio Sequencer and Time Sequencer storyboard types to
progressively reveal text and images.

e The HTML5/JavaScript MyShell uses the Command storyboard to define Pretest and Posttest
guestion collections, add support for the Multiple-Select storyboard type, and to redefine the
Multiple-Choice Text storyboard type to include additional distractors.

We’ve also seen or used the custom field capabilities to:

e Hold information for custom reports (Instructor Guide/Student Guide).

e Store commenting and approval information during the production process.

e Specify popup text and/or graphics for specific phrases found in the storyboard text.

e Store detailed objective and reference data.

e Transform a standard Canvas storyboard into a “Drag and Drop to Hotspot” question.

e Replace standard question types to include additional capabilities or remediation options.
e Specify callout or other specially formatted text content.

e Create any number of custom storyboard types.

The runtime Base Class Framework includes support for the “Multiple-Select” storyboard type. Often
called “Multiple Choice/Multiple Select”, the student is presented with a question and must choose one
Or more responses as an answer.

This storyboard type has no editor built into the CCT. This was a deliberate decision intended to provide
a concrete example of using the Command storyboard type to support a new capability. A technical
article available on the Impression web site includes a step-by-step walkthrough for adding a multiple
select Command storyboard to a content database.

Conclusion

The Impression Content Creation Tool includes a number of mechanisms that can be used to specify
additional courseware data. These include “open-ended” fields, new storyboard types, and Storyboard
Commands that can be added to existing content.

These capabilities help the content side of the tool approach the flexibility and power of the runtime
DevKits while keeping the courseware editing experience simple and focused.

